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Pretransitional anomalies in a shear flow near a second order nematic–smectic-A sNAd phase transition
temperatureTNA, for liquid crystals(LC’s), taking into account the fluctuations of the local smectic order
parameter above theTNA, are investigated. It is shown that the tumbling instability of the Couette shear flow for
polar LC compounds, such as 4-n-octyl-48-cyanobiphenyls8CBd, in the vicinity of TNA, e.g., at a few tens of
mK from TNA in the nematic phase, occurs at any shear rateġ.
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The theoretical description of dissipation processes in liq-
uid crystals(LC’s) is still an important issue[1–6]. Despite
the fact that certain qualitative advances have been achieved
in the construction of a molecular theory of the rheological
properties of nematic liquid crystals(NLC’s) in a shear flow
far away from a nematic–smectic–A sNAd phase transition
temperatureTNA [1–4], it is still too early to talk about the
development of a theory which would make it possible to
describe the rheological process in the vicinity ofTNA, e.g., at
a few tens of mK fromTNA in the nematic phase[5–7].
Taking into account that the fluctuations of the local smectic
order parameter(OP) above the second orderNA phase tran-
sition gives rise to singularities in the elastic constants and
the rotational viscosity coefficient(RVC) g1 [4,5], one
should expect that shear flows will also demonstrate pecu-
liarities in the vicinity ofTNA [6,7]. Indeed, when the director
n̂, oriented in the shearx-y plane[x-y plane, defined by the
liquid crystal flow (x direction) and the velocity gradient in
the y direction;z is the vorticity axis], is disturbed and then
allowed to relax, at temperatures far away fromTNA, one
deals with a twofold result. First, the hydrodynamic torque,

Tvis = F1

2
sg1 + g2cos 2uġdGk̂ = fsa3cos2u − a2sin2udġgk̂ ,

s1d

exerted per unit volume in a high shear flow vanishes when
the director aligns at an equilibrium angle[1,2],

ueq=
1

2
cos−1s− g1/g2d = tan−1sÎa3/a2d, s2d

with respect to the direction of flow velocityv= ġyî. Second,
the director continuously rotates in the shear plane. Here
g1=a3−a2 andg2=a3+a2 are the rotational viscosity coef-
ficients(RVC’s), a2 anda3 are the Leslie coefficients, andġ

is the shear rate. It is clear from this equation that if
ug1u. ug2u or a3.0 (because in practice,a2,0), no real so-
lution for ueq exists. Physically, this means that in this case
the director will tumble under shear flow of the nematic.
Taking into account that both coefficientsg1 andg2, as well
as a2 and a3, are temperature dependent functions, one
should expect that some LC materials undergo a transition
from a laminar flow regime to a tumbling instability as the
temperature decreases[7,8]. As temperature is reduced to-
wardsTNA, the growth of pretransitionalSmAfluctuations are
expected to give rise to a novel torqueT f l on n̂, which alters
theTvis. As results, for low shear ratesġtm,1, the equation
for the balance of torques takes the formTvis+T f l =0, where
T f l is [7]

T f l = − An̂ 3 ĵ = − F−
p

2

kBT

l2ji

sġtmdsn̂ · v̂d

+ O„sġtd2
…Gk̂ cosu. s3d

Here tm is a relaxation time along the director,ji=j is the
correlation length alongn̂, v̂=v / uvu, andl is the layer spacing
of the smectic layers. The physical origin ofT f l is due to the
effect of shear flow on the fluctuation domains. This means
that for a temporal fluctuation domain withn̂iv̂, shear flow
tends to tilt the layers, which changes the layer spacing and
gives rise to the restoring torqueT f l. In contrast, shear flow
does not alter the internal structure of fluctuations with
n̂'gradv andn̂'gradv andn̂' v̂ orientations. As a result,
the effect of fluctuations, at the lowest order inġtm, is re-
flected in a renormalization ofg1 or a3,

ḡ1 = g1 + a3
c; ā3 = a3 + a3

c = a3 +
p

2

kBT

l2
tm

j
, s4d

in Eq. (1), and the balance of torques take the form

ḡ1
] u

] t
+

1

2
sḡ1 + g2 cos 2udġ = ḡ1

] u

] t
+ sā3 cos2u − a2 sin udġ

= 0. s5d

Here a3 and g1 are the bare values of the corresponding
Leslie and rotational viscosity coefficients. It has been found,
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by applying dynamical scaling arguments[4], that the relax-
ation timetm of the order parameter istm,j3/2, and theSmA
correlation lengthj=ji in the reduced temperature range
close to the critical point isj=j0t

−n, wherej0 is the bare
correlation length,t=sT−TNAd /TNA, andn=ni is the associ-
ated critical exponent. So, for low shear ratesġtm,1, both
ḡ1 anda3

c diverge atTNA astm/j, t−n/2. Becausea3,0 for
temperatures far fromTNA in the nematic phase[9], this re-
sult predicts a sign change inā3 in the vicinity TNA. Taking
into account that the critical contribution to the RVCa3

c has
been found, for instance, in the case of 4-n-octyl-48-
cyanobiphenyls8CBd, only in the reduced temperature range
0, t,10−3 (less than 306.7 KfTNAs8CBd=306.5 Kg) [6],
the presmectic behavior in shear flow should be expected at
temperatures for the samet range.

It should be noted that the fluctuations of the local smectic
order parameter above the second orderNA phase transition
give rise to singularities not only in the viscosities of the
nematic but also in the elastic constants. In the hydrody-
namic regimeqsj@1, the behavior of the(total) bend defor-

mation K̄3 can be written in the form[4,6]

K̄3 = K3 + K3
c = K3 +

kBT

24p
qs

2j = K3 +
kBT

6

pj0

l2
t−n, s6d

whereK3
c is the critical contributions to the elastic parameter,

qs=2p / l, l is the layer spacing of the smectic layers,j is the
SmAcorrelation length along the director,tm is the relax-
ation time of the order parameter, andt=sT−TNAd /TNA is the
reduced temperature. Taking into account that the flow align-
ment at temperatures close toTNA is governed not only by
hydrodynamic and fluctuating torques, but also by elastic
torques[9], the equation for the balance of momentum takes
the formTvis+T f l +Tel=0, or in the dimensionless form as

] u

] t
+

1

2
F1 +

g2

ḡ1

cos 2uG − hsud
]2u

] ȳ2 −
1

2
h8sudS ] u

] ȳ
D2

= 0.

s7d

Herehsud=sK1 cos2u+K̄3 sin2ud / sḡ1ġl2d, h8sud is the deriva-
tive of hsud with respect tou, the coefficientsK1 andK3 are
the splay and bend elastic constants, respectively, the dimen-
sionless timet= ġt, and the dimensionless sizeȳ=y/ l, where
l is the length of the smectic layers. Since the shear flow is
normally obtained by displacing an upper horizontal glass
plate with respect to a fixed lower glass plate, the possible
smectic layering can be organized to be parallel to the
boundary surfaces. As a result, theȳ is the dimensionless
distance from the surface in theĵ direction, with ĵ a unit
vector directed perpendicular to the substrates and the smec-
tic layers. Let us consider first the temperature region
−5, log10sT/TNA−1d,−4 close toTNA=306.5 K for 8CB.
First of all, when the temperatureT→TNA, e.g., at a few tens
of mK from TNA in the nematic phase, the bend deformation

coefficientK̄3 and RVCḡ1 both increase to infinity and the

ratio limT→TNA
K̄3/ sḡ1ġl2d, limt→0Os1/t2n−1d. Measurements

of the SmA correlation lengthj for 8CB, in the reduced
temperature range close to the critical point, have been made

by means of high-resolution x-ray scattering on the mass-
density fluctuations[10]. It was found that in the reduced
temperature range −5, log10sT/TNA−1d,−2, j=j0t

−n,
where j0=0.45 nm is the bare correlation length,n
=0.67±0.03 is the associated critical exponent, andl
=1.8 nm. As a result, the fluctuation relaxation timetm and
factor qsj, for 8CB, grows betweentm,1 ms andqsj,18
for log10sT/TNA−1d,−2.0 andtm,1 ms andqsj,1800 for
log10sT/TNA−1d,−5.0, respectively.

It should be noted that there is another description of the
critical contribution to the RVCg1 or Leslie viscosity coef-
ficient a3, which, in the hydrodynamic regimeqsj@1, takes
the form [4,6]

a3
cc = g1

cc =
kBT

4

p

j0
Îrm

K1
tn−1, s8d

whereqs=2p / l, K1 is the splay elastic deformation, andrm
is the mass density. So, the disturbing effect of the surface-
induced fluctuating layer structure on the viscosityḡ1 reflects
in two different forms; first, whenḡ1 diverges atTNA as
,t−n/2, and, second, whenḡ1 diverges as,tn−1. The tem-

perature dependence of theg1
cc and K̄3 in the temperature

range −5, log10sT/TNA−1d,−4 has been calculated in Ref.
[6]. The values of the RVCg1

c and g1
cc as the function of

temperatures are presented in Fig. 1. It is found that the
temperature dependence reflected in these two different
forms gives, practically, the same values of the viscosityḡ1.
In both these cases, the bare values of the RVCg1 has been
calculated using Eq.(8) [6]. Reasonable agreement is also
observed between the calculated values and experimental re-
sults, which were obtained by dynamic light scattering

method[11]. So, the pretransitional anomalies inḡ1 and K̄3
should be expected at temperatures less than 306.7 K,

limT→TNA
K̄3/ sḡ1ġl2d→0, and Eq.(7) leads to a nonstationary

equation forustd, which can be rewritten as

FIG. 1. The temperature dependence of the rotational viscosity
coefficientḡ1, calculated using Eq.(4) (symbols 1), Eqs.(4) and(8)
(symbols 2), and measured values in Ref.[11] of ḡ1 (symbols 3),
respectively. In both theoretical cases, the bare values of the RVC
g1 have been calculated using Eq.(8) [6].
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] u

] t
+

1

2
F1 +

g2

g1 + g1
ccos 2uG = 0, s9d

where

ḡ1
c =

p

2

kBT

l2
tm

j
, wheretm/j , t−n/2, or

=
p

4

kBT

j0
Îrm

K1
tn−1. s10d

From Eq.(9), the flow alignment angleustd is easily derived
from

−E dv

1 + k cosv
= t + t0, s11d

wherev=2ustd, and k=g2/ sg1+g1
cd. In the vicinity of the

second order phase transition temperature −5, log10sT/TNA

−1d,−4 (or ,10 mK from TNA in the nematic phase), the
case 1.k, i.e., g1+g1

c.g2, is always realized, and Eq.(11)
gives the solution for the tumbling flow in the nematic phase,

ustd = − tan−1S x

1 − k
tan

tx

2
D s12d

wherex=Î1−k2.
Calculations of the relaxation processes(Figs. 2 and 3), in

the temperature range −5, log10sT/TNA−1d,−2, close to
TNA,306.5 K for 8CB, shows that under low shear rate flow
ġ=0.1 s−1 (Fig. 2) and ġ=1.0 s−1 (Fig. 3), one has similar
tumbling regimes, but with a different periodDt, in which
the director executes a full cycle of rotation; in the second
caseDt is uġu times larger than in the first case. When the
temperatureT→TNA, e.g., at a few mK fromTNA in the nem-
atic phase, the director tumbling in the shear flow is de-
scribed by the equation

lim
T→TNA

ustd = −
t

2
= −

ġ

2
t. s13d

Physically, this means that the shearing flow, at temperatures
close toTNA, always produces a tumbling regime, and the
angular velocity of the directorn̂ in the shear plane is a
linear function ofġ.

Having obtained the functionustd, one can determine the

angular velocityvstd= u̇std;]ustd /]t of the directorn̂ in
the shear flow as

vstd = −
x2s1 − kd

2
Fs1 − kd2 cos2

tx

2
+ x2 sin2tx

2
G−1

.

s14d

Calculations of the absolute magnitude ofvstd shows that
under low shear ratesġ=0.1 s−1 [Fig. 4(a)] and ġ=1.0 s−1

[Fig. 4(b)], the angular velocity of the directorn̂ in the shear
flow is characterized by oscillating behavior ofuvstdu with
changingt, and magnitudes of these oscillations vary be-
tween 0.2 and 0.8 s−1, for both shearing regimes, and the
range of these oscillations decrease with decreasing of the

FIG. 2. Plot of the rotation of the director in the bulk 8CB
sample under shear flow, characterized by an angleustd given in Eq.
(12), at four temperatures log10sT/TNA−1d=−3.20(curve 1); −3.67
(curve 2); −3.94 (curve 3); and −5.01(curve 4). In all these cases
the value of the shear rate isġ=0.1 s−1.

FIG. 3. The same as Fig. 2, but the value of the shear rate is
ġ=1.0 s−1.

FIG. 4. (a) Plot of the angular velocityvstd of the director in the
bulk 8CB sample under shear flow, calculated using Eq.(14), at the
same four temperatures as in Fig. 2. In all these cases the value of
the shear rate isġ=0.1 s−1. (b) The same as(a), but for the value of
ġ=1.0 s−1.
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temperature towardsTNA. Note that according to Eq.(14) the
temperatureT→TNA, e.g., at a few mK fromTNA in the nem-
atic phase, leads to limT→TNA

uvstdu= 1
2.

Based on these calculations we can conclude that the de-
scribed tumbling instability of the Couette shear flow for LC
compounds, when allowing fluctuations of the local smectic
order parameter above the second orderNA, occurs at any
shear rateġ. However, for temperatures far fromTNA, and
under low shear rate flow, the director orientation in the bulk
of the nematic phase is governed mainly by the elastic forces
and shear flow always produces an alignment regime[6]. For
temperatures far from theTNA (in the case of 8CB, for
T.307 K), where the critical contributionsg1

c,cc to the vis-
cous coefficientḡ1 can safely be disregarded, we deal also
with the tumbling instability of the flow under high shear
rates, because the conditionug1u. ug2u or a3.0 is realized
for that compound. On the other hand, for 4-n-octyloxy-
48-cyanobiphenyls8OCBd a molecule that has an extra oxy-
gen atom compared to 8CB,ug2u. ug1u is always realized

[12] and the director, at least in the high shear flow, aligns at
an angleueq to the flow direction[6].

It should be also pointed out that the small chemical dif-
ference between the molecules 8CB and 8 OCB probably
manifested itself only at temperatures far fromTNA. So, that
difference between these compounds may lead to different
flow dynamics in a high shear Couette flow, at temperatures
far from TNA [6].

It is important to stress that in the vicinity of the boundary
surface the dynamics of nematic LC’s is also dependent on
the surface potential, which penetrates the bulk nematic over
a distancels up to ,3.0 mm [13], and gives an additional
contribution to the torque balance equation which is largely
temperature independent. But in the present study we are
primarily focused on the shear flow far away overls from
the boundary surfaces, where influence of the surface forces
is vanishingly small.
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